28
Mei
09

FILSAFAT ILMU:ILMU DAN MATEMATIKA

ILMU DAN MATEMATIKA

PENDAHULUAN

Dalam filsafat ilmu pengetahuan mempelajari esensi atau hakikat ilmu pengetahuan tertentu secara rasional. Filsafat ilmu pengetahuan merupakan cabang filsafat yang mempelajari teori pembagian ilmu, metode yang digunakan dalam ilmu, tentang dasar kepastian dan jenis keterangan yang berkaitan dengan kebenaran ilmu tertentu.

Filsafat ilmu pengetahuan merupakan salah satu cabang yang mempersoalkan mengenai masalah hakikat pengetahuan. Yang dimaksud dalam hal ini adalah suatu ilmu pengetahuan kefilsafatan yang secara khusus hendak memperoleh pengetahuan tentang hakikat pengetahuan.

Dalam filsafat ilmu dipelajari mengenai ilmu dan matematika. Ilmu tanpa matematika  tidak berkembang, matematika tanpa ilmu tak ada keteraturan.

Dengan pengetahuan manusia dapat mengembangkan mengatasi kelangsungan hidupnya, memikirkan hal-hal yang baru dan menjadikan manusia sebagai makhluk yang khas di muka bumi ini.

Dalam tulisan ini hanya di paparkan  pengertian ilmu, pengertian matematika,  hubungan antara ilmu dan matematika. Ilmu dapat dipandang sebagai produk,sebagai proses dan sebagai paradigma ethika.Ia berusaha memahami alam sebagaimana adanya.

A. PENGERTIAN ILMU

Ilmu berasal dari bahasa Arab: ‘alima, ya‘lamu, ‘ilman yang berarti mengerti, memahami benar-benar. Dalam bahasa Inggris ilmu disebut science dan bahasa latin scientia(pengetahuan). Dalam kamus besar bahasa Indonesia Ilmu diartikan sebagai pengetahuan tentang suatu bidang yang disusun secara bersistem menurut metode-metode tertentu, yang dapat digunakan untuk menerangkan gejala-gejala tertentu dibidang pengetahuan itu.

Ada orang yang menamakannya ilmu, ada yang menamakannya ilmu pengetahuan, dan ada pula yang menyebutnya saint. Keberagaman istilah tersebut adalah suatu usaha untuk melahirkan padanan (meng-Indonesiakan) kata science yang asalnya dari bahasa Inggris.

Dari segi maknanya, pengertian ilmu sepanjang yang dibaca dalam pustaka menunjukkan pada sekurang-kurangnya tiga hal: pengetahuan, aktivitas dan metode. Dalam hal yang pertama dan ini yang terumum, Ilmu senantiasa berarti pengetahuan. Diantara fara filsuf dari berbagai aliran terdapat pemahaman umum bahwa ilmu adalah suatu kumpulan yang sistimatis dari pengetahuan yang dihimpun dengan perantaraan metode ilmiah.

Pengetahuan sesungguhnya hanyalah hasil atau produk dari suatu kegiatan yang dilakukan oleh manusia. Dengan demikian dapatlah dipahami bilamana ada makna tambahan dari ilmu sebagai aktivitas( atau suatu proses yakni serangkaian aktivitas yang dilakukan oleh manusia). Menurut Prof Harold H Titus, banyak orang telah mempergunakan istilah ilmu untuk menyebut suatu metode guna memperoleh pengetahuan yang objective dan dapat diperiksa kebenarannya.

Pengertian ilmu sebagai pengetahuan, aktivitas atau metode itu bila ditinjau lebih mendalam sesungguhnya tidak saling bertentangan. Bahkan sebaliknya, ketiga hal itu merupakan kesatuan logis yang mesti ada secara berurutan. Ilmu harus diusahakan dengan aktivitas manusia, aktivitas itu harus dilaksanakan dengan metode tertentu dan aktivitas itu menghasilkan pengetahuan yang sistimatis.

B. PERKEMBANGAN ILMU

Ditinjau dari perkembangannya maka ilmu dibagi dalam tiga tahap yakni:

1. Tahap sistematis

Pada tahap ini ilmu mulai menggolong-golongkan objek empiris kedalam kategori-kategori tertentu yang memungkinkan kita untuk menemukan ciri-ciri yang bersifat umum dari angggota-anggota yang menjadi kelompok tertentu. Ini merupakan pengetahuan manusia mengenali dunia fisik.

2. Tahap komparatif

Pada tahap ini ilmu mulai mencari hubungan yang didasarkan pada perbandingan antara berbagai objek yang kita kaji.

3. Tahap Kuantitatif

Pada tahap ini ilmu mencari hubungan sebab akibat berdasarkan pengukuran yang eksak dari objek yang kita selidiki.

C. PENGERTIAN MATEMATIKA

Matematika diambil dari bahasa Yunani, :( μαθηματικάmathēmatiká) Perkataan itu mempunyai akar kata mathema yang berarti pengetahuan atau ilmu (knowledge,science),  secara umum ditegaskan sebagai penelitian pola dari struktur, perubahan,dan ruang: tak lebih resmi, seorang mungkin mengatakan adalah penelitian bilangan dan angka. Dalam pandangan formalis, matematika adalah pemeriksaan aksioma yang menegaskan struktur abstrak menggunakan logika simbolik dan notasi matematika; pandangan lain tergambar dalam filosofi matematika.

Beberapa aliran dalam filsafat matematika:

  1. Aliran Logistik

-         Pelopornya : Immanuel Kant (1724 – 1804)

-         Berpendapat bahwa matematika merupakan cara logis (logistik) yang salah atau benarnya dapat ditentukan tanpa mempelajari dunia empiris.

-         Matematika murni merupakan cabang dari logika, konsep matematika dapat di reduksikan menjadi konsep logika.

  1. Aliran Intuisionis

-         Pelopornya : Jan Brouwer (1881 – 1966)

-         Berpendapat bahwa matematika itu bersifat intusionis

-         Intuisi murni dari berhitung merupakan titik tolak tentang matematika bilangan. Hakekat sebuah bilangan harus dapat dibentuk melalui kegiatan intuitif dalam berhitung dan menghitung.

  1. Aliran Formalis

-    Pelopornya :  David Hilbert (1862 – 1943)

-  Berpendapat bahwa matematika merupakan pengetahuan tentang struktur formal dari lambang . Kaum formalis menekankan pada aspek formal dari matematika sebagai bahasa lambang dan mengusahakan konsistensi dalam penggunaan matematika sebagai bahasa lambang.

-  Kaum Formalis membantah aliran logistik dan menyatakan bahwa masalah-masalah dalam logika sama sekali tidak ada hubungan dengan matematika

Matematika adalah cara/ metode berpikir dan bernalar. Matematika adalah cara berpikir yang digunakan untuk memecahkan semua jenis persoalan. Matematika bila ditinjau dari segi epistemology ilmu  bukanlah ilmu. Ia lebih merupakan artificial yang bersifat eksak, cermat dan terbebas dari rona emosi. Matematika adalah logika yang telah berkembang, yang memberikan sifat kuantitatif kepada pengetahuan keilmuan.Matematika merupakan sarana berfikir deduktif yang amat berguna untuk membangun teori keilmuan dan menurunkan prediksi-prediksi daripadanya, dan untuk mengkomunikasikan hasil-hasil kegiatan keilmuan dengan benar dan jelas dan secara singkat dan jelas. Matematika adalah bahasa  yang melambangkan serangkaian makna dari pernyataan yang ingin kita sampaikan. Lambang-lambang matematika mempunyai “artificial” yang baru mempunyai arti setelah sebuah makna diberikan padanya.

D. HAKEKAT MATEMATIKA

1. Matematika sebagai sarana berpikir deduktif

Matematika dikenal dengan ilmu deduktif. Ini berarti proses pengerjaan matematika harus bersifat deduktif. Matematika tidak menerima generalisasi berdasarkan pengamatan( induktif), tetapi harus berdasarkan pembuktian deduktif. Meskipun demikian untuk membantu pemikiran pada tahap-tahap permulaan seringkali kita memerlukan bantuan contoh-contoh khusus atau ilustrasi geometris.

Perlu pula diketahui bahwa baik isi maupun metode mencarikebenaran dalam matematika berbeda dengan ilmu pengetahuan alam, apalagi dengan ilmu pengetahuan umum. Metode mencari kebenaran yang dipakai oleh matematika adalah ilmu deduktif, sedangkan oleh ilmu pengetahuan alam adalah metode induktif atau eksperimen. Namun dalam matematika mencari kebenaran itu bisa dimulai dengan cara induktif, tetapi seterusnya generalisasi yang benar untuk semua keadaan harus bisa dibuktikan secara deduktif. Dalam matematika suatu generalisasi, sifat, teori atau dalil itu belum dapat diterima kebenarannya sebelum dapat dibuktikan secara deduktif.Sebagai contoh, dalam ilmu biologi berdasarkan pada pengamatan, dari beberapa binatang menyusui ternyata selalu melahirkan. Sehingga kita bisa membuat generalisasi secara induktif bahwa setiap binatang menyusui adalah melahirkan.

Generalisasi yang dibenarkan dalam matematika adalah generalisasi yang telah dapat dibuktikan secara deduktif. Contoh: untuk pembuktian jumlah dua bilangan ganjil adalah bilangan genap. Pembuktian secara deduktif sebagai berikut: andaikan m dan n sembarang dua bilangan bulat maka 2m+ 1 dan 2n+1 tentunya masing-masing merupakan bilangan ganjil. Jika kita jumlahkan (2m+1) + (2n+1) = 2(m+n+1). Karena m dan n bilangan bulat maka  (m+n+1) bilangan bulat, sehingga 2(m+n+1) adalah bilangan genap. Jadi jumlah dua bilangan ganjil selalu genap.

2. Matematika bersifat terstruktur

Menurut Ruseffendi(Tim MKPBM,2001;25) matematika mempelajari tentang pola keteraturan, tentang struktur yang terorganisasikan. Hal ini dimulai dari unsure-unsur yang tidak terdefinisikan kemudian pada unsure yang didefinisikan, ke aksioma/postulat dan akhirnya pada teorema. Konsep-konsep matematika tersusun secara hierarkis, terstruktur,logis, dan sistematis mulai dari konsep yang paling sederhana sampai pada konsep yang paling kompleks.

Dalam matematika terdapat topik atau konsep prasyarat sebagai dasar untuk memahami topik atau konsep selanjutnya. Ibaratmembangun rumah, maka fondasi harus kokoh. Contohnya konsep bilangan genap. Bilangan genap adalah bilangan bulat yang habis dibagi dua. Sebelum membahas blangan genap, siswa harus memahami dulu konsep bilangan bulat dan pengertian habis dibagi dua sebagai konsep prasyarat.

Dari unsur-unsur yang tidak terdefinisi itu selanjutnya dapat dibentuk unsure-unsur matematika yang terdefinisi. Misalnya segitiga adalah lengkungan tertutup sederhana yang merupakan gabungan dari tiga buah segmen garis.

Dari  unsur-unsur yang tidak terdefinisi dan unsure-unsur yang terdefinisi dapat dibuat asumsi-asumsi yang dikenal dengan aksioma atau postulat. Misalnya:  melalui sebuah titik sembarang hanya dapat  dibuat sebuah garis kesuatu titik yang lain.

Tahap selanjutnya dari unsure-unsur yang tidak terdefiisi , unsure-unsur yang terdefinsi , dan aksioma atau postulat dapat disusun teorema-teorema yang kebenarannya harus dibuktikan secara deduktif dan berlaku umum. Misalnya: jumlah ukuran ketiga sudut dalam sebuah segitiga adalah 180 derajat.

3. Matematika sebagai Ratu dan Pelayan Ilmu

Matematika sebagai ratu atau ibunya ilmu dimaksudkan bahwa matematika adalah sebagai sumber dari ilmu yang lain dan pada perkembangannya tidak tergantung pada ilmu lain. Dengan kata lain, banyak ilmu-ilmu yang penemuan dan pengembangannya bergantung dari matematika. Sebagai contoh: banyak teori-teori dan cabang-cabang dari fisika dan kimia yang ditemukan dan dikembangkan melalui konsep kalkulus. Teori mendel pada Biologi melalui konsep pada probabilitas. Teori ekonomi melalui konsep fungsi dan sebagainya.

Dari kedudukan matematika sebagai ratu ilmu pengetahuan matemaika selain tumbuh dan berkembang untuk dirinya sendiri juga untuk melayani kebutuhan ilmu pengetahuan lainnya dalam pengembangan dan operasinya. Cabang matematika yang memenuhi fungsinya seperti yang disebutkan terakhir itu dinamakan dengan matematika Terapan(Applied Mathematic)

4. Matematika sebagai bahasa

Matematika adalah bahasa yang melambangkan serangkaian makna dari pernyataan yang ingin kita sampaikan. Lambang-lambang matematika baru mempunyai arti setelah sebuah makna diberikan padanya. Tanpa itu maka matematika hanyalah merupakan kumpulan unsur-unsur yang mati.

Bahasa verbal mempunyai beberapa kekurangan yang sangat mengganggu karena terkadang mempunyai lebih dari satu arti. Untuk mengatasi kekurangan yang terdapat pada bahasa maka kita berpaling pada matematika. Dalam hal ini dapat kita katakan bahwa matematika adalah bahasa yang berusaha untuk menghilangkan sifat kabur, majemuk, danemosional dari bahasa verbal. Lambang-lambang darimatematika dibuat secara ”artifisial” yakni baru mempunyai arti setelah sebuah makna diberikan. Dan bersifat individual yaitu berlaku khusus untuk masalahyang sedang kita kaji.

5. Matematika bersifat kuantitatif

Dengan bahasa verbal kita bisa membandingkan dua objek yang berlainan umpamanya  gajah dan semut, maka kita hanya bisa mengatakan gajah lebih besar daripada semut, kalau ingin menelusuri lebih lanjut berapa besar gajah dibandingkan dengan semut, maka kita mengalami kesulitan dalam mengemukakan hubungan itu, bila ingin mengetahui secara eksak berapa besar gajah bila dibandingkan dengan semut, maka dengan bahasa verbal tidak dapat mengatakan apa-apa.

Matematika mengembangkan konsep pengukuran, lewat pengukuran dapat mengetahui dengan tepat berapa panjang. Bahasa verbal hanya mampu mengemukakan pernyataan yang bersifat kualitatif. Kita mengetahui bahwa sebatang logam bila dipanaskan akan memanjang, tetapi tidak bisa mengatakan berapa besar pertambahan panjang logamnya.

Untuk itu matematika mengembangkan konsep pengukuran, lewat pengukuran , maka kita dapat mengetahui dengan tepat berapa panjang sebatang logam dan berapa pertambahannya bila dipanaskan, Dengan mengetahui hal ini maka pernyataan ilmiah yang berupa pernyataan kualitatif seperti sebatang logam bila dipanaskan akan memanjang, dpat diganti dengan pernyataan matematika yang lebih eksak umpamanya: P1 = Po (1 + n), dimana P1 adalah panjang logam pada temperatur t, Po merupakan panjang logam pada temperatur nol dan n merupakan koefisien pemuai logam tersebut.

E.  KARAKTERISTIK MATEMATIKA

  1. 1. Memiliki obyek yang abstrak

Obyek dasar matematika adalah abstrak dan disebut obyek mental, obyek pikiran yaitu :

a. Fakta

Berupa konvensi-konvensi yang di ungkap dengan simbol tertentu.

Contoh :

  1. ”2” dipahami sebagai bilangan ”doa”
  2. ”5-2” dipahami sebagai ”lima kurang dua”
  3. ”//” bermakna ”sejajar” dan lain-lain

b. Konsep

Konsep adalah ide abstrak yang dapat digunakan untuk menggolongkan sejumlah obyek. Apakah obyek tertentu merupakan konsep atau bukan.

c. Operasi

- Operasi adalah pengerjaan hitung, pengerjaan aljabar, dan pengerjaan matematika yang lain.

- Operasi adalah suatu relasi khusus karena operasi adalah aturan untuk memperoleh elemen tunggal dari satu atau lebih elemen yang diketahui

-   Operasi unair, operasi biner dll

d. Prinsip

- Prinsip adalah obyek matemática yang komplek. Prinsip dapat terdiri dari beberapa fakta, beberapa konsep, yang dikaitkan oleh suatu relasi / operasi

- Prinsip adalah hubungan antara berbagai obyek dasar matemática. Prinsip dapat berupa axioma , teorema, sifat dll

- Skill adalah Prosegur atau suatu kumpulan aturan-aturan yang digunakan untuk menyelesaikan soal matemática

2. Bertumpu pada kesepakatan

Kesepakatan yang amat mendasar adalah axioma dan konsep primitif . Aksioma disebut juga postulat adalah pernyataan pangkal yang tidak perlu di buktikan . Konsep primitif disebut juga undefined term adalah pengertian pangkal yang tidak perlu di definisikan.

3. Berpola pikir deduktif

Kebenaran suatu konsep atau pernyataan yang diperoleh sebagai akibat logis dari kebenaran sebelumnya sehingga kaitan Antar konsep atau pernyataan dalam matemática bersifat consisten. Proses pembuktian secara deduktif akan melibatkan teori atau rumus matemática lainnya yang sebelumnya sudad di buktikan kebenarannya secara deduktif juga.

4. Memiliki simbol yang kosong dari arti

Contoh : Model persamaan ”x+y=z” belum tentu bermakna bilangan, makna huruf atau tanda itu tergantung dari permasalahan yang mengakibatkan terbentuknya model itu.

5. Memperhatikan semesta pembicaraan

Bila semesta pembicaraannya adalah bilangan maka simbol-simbol diarikan bilangan.

contohnya: jika kita bicara di ruang lingkup vektor a+vektor b =vektor c maka huruf-huruf yang digunakan bukan berarti bilangan tetapi harus di artikan sebagai vektor

6. Konsisten dalam sistemnya

Dalam matematika terdapat banyak sistem. Satu dengan yang lain bisa saling berkaitan tetapi juga bisa saling lepas. Sistem-sistem aljabar : sistem aksioma dari grup , sistem aksioma dari ring , sistem aksioma dari field, dsb. Sistem-sistem geometri : sistem geometri netral, sistem geometri Euclides , sistem geometri non Euclides . Di dalam masing-masing sistem dan struktur itu terdapat KONSISTENSI.

  1. F. PERBEDAAN MATEMATIKA DAN ILMU

Perbedaan matematika dan ilmu adalah:

-          Pembuktian pada matematika tidak di dapat dengan pembuktian empiris melainkan penalaran deduktif

-          Pembuktian  pada ilmu pengetahuan di dapat melalui pembuktian secara empiris.

G. HUBUNGAN ILMU DAN MATEMATIKA

Matematika sangat penting bagi keilmuan, terutama dalam peran yang dimainkannya dalam mengekspresikan model ilmiah. Mengamati dan mengumpulkan hasil-hasil pengukuran, sebagaimana membuat hipotesis dan dugaan, pasti membutuhkan model dan eksploitasi matematis. Cabang matematika yang sering dipakai dalam keilmuan di antaranya kalkulus dan statistika, meskipun sebenarnya semua cabang matematika mempunyai penerapannya, bahkan bidang “murni” seperti teori bilangan dan topologi. Tanpa matematika maka pengetahuan akan berhenti  pada tahap kualitatif yang tidak memungkinkan untuk meningkatkan penalaran lebih jauh. Oleh karena maka dapat dikatakan bahwa ilmu tanpa matematika tidak berkembang.

Beberapa orang pemikir memandang matematikawan sebagai ilmuwan, dengan anggapan bahwa pembuktian-pembuktian matematis setara dengan percobaan. Sebagian yang lainnya tidak menganggap matematika sebagai ilmu, sebab tidak memerlukan uji-uji eksperimental pada teori dan hipotesisnya. Namun, dibalik kedua anggapan itu, kenyataan pentingnya matematika sebagai alat yang sangat berguna untuk menggambarkan/menjelaskan alam semesta telah menjadi isu utama bagi filsafat matematika

KESIMPULAN

  1. Matematika mengakibatkan ilmu mengalami perkembangan dari tahap kualitatif ke kuantitatif.
  2. Fungsi matematika menjadi sangat penting dalam perkembangan berbagai ilmu pengetahuan
  3. Matematika merupakan ilmu deduktif.

PUSTAKA

Depdiknas. 2003. Kamus Besar Bahasa Indonesia. Edisi ketiga. Jakarta: Balai Pustaka.

Suriasumantri,Jujun S. 2005. Filsafat Ilmu Sebuah Pengantar Populer. Jakarta: Pustaka Sinar Harapan.

″http://id.wikipedia.org/wiki/matematika″ Kategori: Matematika


0 Responses to “FILSAFAT ILMU:ILMU DAN MATEMATIKA”



  1. Tinggalkan sebuah Komentar

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s


Ikuti

Get every new post delivered to your Inbox.

%d bloggers like this: